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Informational theoretic framework; 
Instrumental;
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Understanding and predicting 
physical phenomena (e.g., 
atomic structures, scattering 
processes, decays).
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“But if quantum mechanics isn’t physics in the usual sense — if it’s not about matter, or energy, or waves, or 
particles — then what is it about? From my perspective, it’s about information and probabilities and 
observables, and how they relate to each other.” – Scott Aaronson, Quantum Computing Since Democritus 

So what is different? The theory is the same, but taken from a new perspective: 

• QM is a physical theory grounded in a notion of physicalism, that is, it focuses on “real” physical  systems and their 
properties; 

• QI is an epistemic framework concerned  with studying the manipulation and processing of information emergent from 
the quantum mechanical phenomena.
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E.g. Typically, one tries to be as agnostic as possible about the contents of the boxes, but sometimes general 
assumptions can be established. For instance, we may consider preparations that only output states up to a certain 
dimension or energy.
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operators acting on a Hilbert space 𝑯.

In the lab it might look more like this…

𝑦 ∈ 𝑚 = {1, … , 𝑚}

𝜌𝑥

𝑏

𝑝 𝑏 𝑦, 𝑥 = 𝑇𝑟(𝜌𝑥 𝐸𝑏|𝑦)

• Probability of outcome 𝑏 for POVM defined by 𝑦, and state 
prepared by 𝑥 is given by the Born rule as follows,  

𝑀

• For a destructive measurement there is no post-measurement state 



𝑦

𝜌𝑥 ෤𝜌𝑀

𝑏

𝑦

𝜌𝑥 𝑀

𝑏



Operationally, to trash the system is equivalent to assume that it did not exist.
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Special case, where the POVM elements are projections, 𝑃2 = 𝑃.

{𝐸𝑏|𝑦}  {𝐸0|0 = ⟩0 ⟨0 =
1 0
0 0

, 𝐸1|0 = ⟩1 ⟨1 =
0 0
0 1

}, 

{𝐸0|1 = ⟩+ ⟨+ =
1/2 1/2
1/2 1/2

, 𝐸1|1 = ⟩− ⟨− =
1/2 −1/2

−1/2 1/2
}, 
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𝑝 0 0, 𝑥 = 𝑇𝑟(𝜌𝑥 ⟩0 ⟨0 ) ֜
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𝑝 1 1, 𝑥 = 𝑇𝑟(𝜌𝑥 ⟩− ⟨− ) ֜
 

෤𝜌= ⟩− ⟨−

Special case, where the POVM elements are projections, 𝑃2 = 𝑃.

{𝐸𝑏|𝑦}  {𝐸0|0 = ⟩0 ⟨0 =
1 0
0 0

, 𝐸1|0 = ⟩1 ⟨1 =
0 0
0 1

}, 

{𝐸0|1 = ⟩+ ⟨+ =
1/2 1/2
1/2 1/2

, 𝐸1|1 = ⟩− ⟨− =
1/2 −1/2

−1/2 1/2
}, 

Calculating the post-measurement state for projective 
measurements is easier, it is just the state associated 
with the classical value registered y.
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Now that we have the boxes defined…

How to connect the boxes? Compositional rules for connecting the quantum systems using black-boxes:
Quantum outputs can connect to quantum inputs

• 𝑃 < 𝑇;  𝑃 < 𝑀;
• 𝑇 < 𝑇;  𝑇 < 𝑀; 
• 𝑀 < 𝑀 ; 𝑀 < 𝑇 ;

𝑥 𝑦

𝑏

𝑃
𝜌𝑥 𝑇 𝛷(𝜌𝑥) 𝑀

What is the simplest diagram using: 1 Preparation, 1 Transformation and 1 Measurement?

𝑝 𝑏 𝑦, 𝑥 = 𝑇𝑟(𝛷(𝜌𝑥)𝐸𝑏|𝑦)



𝑥 𝑦

𝑏

𝑃
𝜌𝑥 𝑇 𝛷(𝜌𝑥) 𝑀



𝑥 𝑦

𝑏

𝑃
𝜌𝑥 𝑇 𝛷(𝜌𝑥) 𝑀

𝑃′



𝑥 𝑦

𝑏

𝑃
𝜌𝑥 𝑇 𝛷(𝜌𝑥) 𝑀

𝑃′

𝑥 ∈ {0,1}

𝑃′
{𝜌1= ⟩0 ⟨0 , 𝜌2 = ⟩1 ⟨1 }

𝑐 ∈ {0,1}

𝑇 𝐻𝑐(𝜌𝑥) 𝐻𝑐†

This is equivalent to the 
original example of the 
preparation we saw. 
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𝑏

𝑃
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𝑥 𝑦

𝑏

𝑃
𝜌𝑥 𝑇 𝛷(𝜌𝑥) 

𝑀

𝑀

𝑀′

𝑃′
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How to connect the boxes? Compositional rules for connecting the quantum systems using black-boxes:

Quantum outputs can connect to quantum inputs (ignoring Transformations)

We are going to focus only on Preparation and Measurements.
What is the simplest diagram using: 1 Preparation and 1 Measurement? There is only one… 

𝑥 𝑦

𝑏

𝑃
𝜌𝑥

Prepare and Measure scenario

𝑝 𝑏 𝑦, 𝑥 = 𝑇𝑟(𝜌𝑥𝐸𝑏|𝑦)



1 Preparation and 2 Measurements ?



𝑃

𝑥

𝑎

1 Preparation and 2 Measurements: Bi-partite Bell 
(Nonlocality)

𝑦

𝑏

𝛷 =
1

2
( 00 + 11 )



1 Preparation and 2 Measurements: Bi-partite Bell w/ restricted classical communication

𝑃

𝑥

𝑓(𝑦, 𝑎)

𝑏

𝛷 =
1

2
( 00 + 11 )



𝑥
𝑦2

𝑏2

𝑃
𝜌𝑥

𝑦1

𝑏1

𝜌𝑥,𝑦1,𝑏1

1 Preparation and 2 Measurements: Sequential Measurement Scenario with two 
measurements (Legget-Garg Inequalities, Temporal correlation, KS-Contextuality)
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1 Preparation and 3 Measurements:

• Tripartite Bell
• Bi-partite hidden nonlocal scenario (1 measurement for A and 2 for Bob)
• Sequential Scenario with 3 Measurements

2 Preparations and (up to) 4 Measurements:

… and many more!

• Bi-local scenario
• Entanglement-assisted PM

Reduced to a caricature, the operational perspective could be read to say

•  Quantum Information = Finding interesting ways to connect boxes;
•  Quantum Cryptography = Finding interesting ways to securely connect boxes;
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• {𝜌00= ⟩0 ⟨0 , 𝜌10 = ⟩1 ⟨1 , 𝜌01 = ⟩+ ⟨+ , 𝜌11 = ⟩− ⟨− }

Define the density operators for the possible inputs:

• {𝐸0|0 = ⟩0 ⟨0 =
1 0
0 0

, 𝐸1|0 = ⟩1 ⟨1 =
0 0
0 1

}, 

𝑝 𝑏 ≠ 𝑠0 𝑦 = 0, 𝑠0, 𝑠1 = 0 = 0
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• {𝐸0|1 = ⟩+ ⟨+ =
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𝑝 𝑏 ≠ 𝑠0 𝑦 = 1, 𝑠0, 𝑠1 = 1 = 0

𝑝 𝑏 ≠ 𝑠0 𝑦 = 1, 𝑠0, 𝑠1 = 0 = 1/2

𝑝 𝑏 = 𝑠0 𝑦 = 1, 𝑠0, 𝑠1 = 1 = 1

𝑠0, 𝑠1 ∈ {0,1}

𝑏 ∈ {0,1}

𝑃
𝜌𝑠0,𝑠1

𝑝 𝑏 𝑦, 𝑠0, 𝑠1 = 𝑇𝑟(𝜌𝑠0,𝑠1
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Define the measurements:

𝑝 𝑏 = 𝑠0 𝑦 = 1, 𝑠0, 𝑠1 = 0 = 1/2

𝑝 𝑏 ≠ 𝑠0 𝑦 = 0, 𝑠0, 𝑠1 = 1 = 1/2

𝑝 𝑏 = 𝑠0 𝑦 = 0, 𝑠0, 𝑠1 = 1 = 1/2
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Define the density operators for the possible inputs:

𝑠0, 𝑠1 ∈ {0,1}
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𝑃
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These states form Mutually Unbiased Basis (or Conjugate Basis) i.e. Computational and Diagonal, these are 
states such that,  when projected to the other basis no information is obtained about the state of the system.
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… and even some recent work from IT-Aveiro (Q-OLE by M. Santos et al) 
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Thes scheme is the building block for:
• The first Quantum Oblivious Transfer (QOT) protocol proposed;
• The Bennet-Brassard QKD protocol (BB84)

… and even some recent work from IT-Aveiro (Q-OLE by M. Santos et al) 

But even in the original conjugate coding, Wiesner already gave two applications  of this idea. As we will 
see, under some very strong assumptions, the first example can already be rightfully claimed to be an OT.
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Bob’s measurement is not so 
good, so it needs to fix à priori 
the y globally for all rounds.



So in the end, Bob can either recover a noisy string 1 or a noisy string 2, according to his choice, but not both. 
Furthermore, Alice won’t know what was the message that Bob recovered since there is no information going from Bob to Alice.



So in the end, Bob can either recover a noisy string 1 or a noisy string 2, according to his choice, but not both. 
Furthermore, Alice won’t know what was the message that Bob recovered since there is no information going from Bob to Alice.

This is a 1-out-of-2 OT ! Introduced much before Rabin’s 1981 proposal.



So in the end, Bob can either recover a noisy string 1 or a noisy string 2, according to his choice, but not both. 
Furthermore, Alice won’t know what was the message that Bob recovered since there is no information going from Bob to Alice.

This is a 1-out-of-2 OT ! Introduced much before Rabin’s 1981 proposal.



So in the end, Bob can either recover a noisy string 1 or a noisy string 2, according to his choice, but not both. 
Furthermore, Alice won’t know what was the message that Bob recovered since there is no information going from Bob to Alice.

This is a 1-out-of-2 OT ! Introduced much before Rabin’s 1981 proposal.

• It is perfectly secure against a malicious Sender/Alice;
• It is secure against a semi-honest Receiver/Bob, for a trusted model of non-adaptative single qubit measurements



So in the end, Bob can either recover a noisy string 1 or a noisy string 2, according to his choice, but not both. 
Furthermore, Alice won’t know what was the message that Bob recovered since there is no information going from Bob to Alice.

This is a 1-out-of-2 OT ! Introduced much before Rabin’s 1981 proposal.

• It is perfectly secure against a malicious Sender/Alice;
• It is secure against a semi-honest Receiver/Bob, for a trusted model of non-adaptative single qubit measurements

Collective measurements are a problem.
Solved with extra physical assumptions on the trusted model, or computational assumptions.  



So in the end, Bob can either recover a noisy string 1 or a noisy string 2, according to his choice, but not both. 
Furthermore, Alice won’t know what was the message that Bob recovered since there is no information going from Bob to Alice.

This is a 1-out-of-2 OT ! Introduced much before Rabin’s 1981 proposal.

• It is perfectly secure against a malicious Sender/Alice;
• It is secure against a semi-honest Receiver/Bob, for a trusted model of non-adaptative single qubit measurements

Collective measurements are a problem.
Solved with extra physical assumptions on the trusted model, or computational assumptions.  

For the next time! 



Thanks!

(You can ask me for references, I forgot to put them on the slides)
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