TALK TO SATELLITE – GROUND STATION TECHNOLOGY

Amita Shrestha Institute of Communications and Navigation German Aerospace Center (DLR)

Contents

Institute for Communications and Navigation

The institute is engaged in the design, analysis and realization of systems for communication and navigation for applications in the fields of space, aviation, transport and security. The work ranges from the scientific fundamentals to technology demonstration in a real environment and technology transfer in cooperation with industry.

Optical Satellite Links Department

Heritage in Free-Space Optical Transmission

2004: First link from a tethered balloon

2005: First link from the stratosphere, 22 km height 1.25 Gbps, 100 mW 2008: First air-to-ground link 1.25 Gbps, d=120 km

2013: First air-to-ground link Mach 0.7, 1.25 Gbps, d=60 km jointly with ViaLight, Contract by Airbus

Quantum Key Distribution (QKD) from aircraft to ground

 Investigation of Quantum Key Distribution (QKD) with BB84 protocol

- Physically secure communications
- Polarization states of single photons exploited as quantum effect
- Demonstration of QKD between aircraft and ground segment in 2011

OSIRIS* Program at IKN

*Optical Space Infrared Downlink System

DLR IKN Optical Ground Stations

Optical Ground Station Oberpfaffenhon (OGSOP)

Transportable Optical Ground Station (TOGS)

Free Space Optical Communication

"From RF to Light" – what wavelengths are used for Space-FSO

Free Space Optical (FSO) Communication

Advantages of FSO:

High datarate

- Low power consumption
- □ High security
- □ No spectrum regulation
- Transmission of Single Photons allow application of Quantum techniques

Typical parameters

- Laser-wavelengths in the near infrared (850nm / 1064nm / 1550nm)
- diffraction limited Tx-divergence: below 1/1000 degree $\rightarrow x \mu rad$
- datarates from few 100Mbps up to *n* Tbps

FSO Challenges

Challenges:

Turbulent atmosphere: scintillation, fading
Fog, rain, snow haze: fading, link outages
Pointing/tracking error : beam wandering

- Mitigation Techniques:
- Aperture averaging using bigger telescopes
- Complex Adaptive optics
- □ Variable data rate etc.

Directed Point-to-Point Links by Modulated Laser Beams → FSOC (Free-Space Optical Communications)

Atmospheric transmission: Beer's law

- Calculation of transmission with extinction coefficient (1/km)
- Extinction = Scattering + Absorption
- Accumulated effects considered with one equation \rightarrow Beer's law
 - Rayleigh scattering
 - Aerosol scattering and absorption
 - Molecular absorption lines

$$I_{out} = I_{in} \cdot \exp(-\int_{0}^{L} \alpha_{ext}(z,\lambda) dz)$$

$$\alpha_{ext}(z,\lambda) = \sum_{i} \alpha_{i}(z,\lambda)$$

 α_{ext} complete extinction coefficient [km⁻¹]

- α_i various scat./abs. coefficients [km⁻¹]
- I output intensity $[W/m^2]$
- I_0 input intensity $[W/m^2]$
- λ Wavelength [µm]
- L path length [m]
- *z* path variable [m]

Available Optical Spectrum between Molecular Absorption Lines

The C- and L-Band DWDM Channels and their transmission (1520nm – 1620nm)

IRT-Scintillation through self-interference

- Beam propagating through optical turbulence \rightarrow wave-front distortions \rightarrow several effects
- Severity of the cumulated turbulence and fluctuation regime (weak/moderate/strong)

Aperture Averaging with IRT-Scintillation depends on ratio intensity-structure vs aperture-diameter

same IRT, two apertures

Aperture Averaging with different intensity-cell sizes Asymmetry in Satellite Uplink vs. Downlink Channel

Typical LEO Downlink Scenario

Pointing, Aquisition and Tracking (PAT)

Pointing

- Both satellite and GS points towards each other using GPS coordinates, orbit data etc.
- Acquisition
 - Terminals acquires the signal from each other in their acquisition sensor
- Tracking
 - Continous tracking of the acquired signal with coarse pointing or fine pointing assembly

Optical LEO – Direct-to-Earth: Measured Received Power and Bit Error Rate over Elevation

ESA-OGS (Teneriffa), 1 m

Bilder: ESA

Some more Ground Stations

- OGS des NICT
- Standort: Tokyo
- 1,5 m

- OGS von NASA-JPL
- Standort: Table Mountain, Kalifornien
- 1 m

DLR Ground Stations

Optical Ground Station Oberpfaffenhofen "Next generation" – OGSOP-NG

Improved performance and sensitivity

- 80 cm aperture
- Measurements with better spatial resolution
- Supports links in GEO-, deep space- and quantum key distribution-applications

Multiple foci, including Coudé

- High flexibility to change between setups, enabling multi-mission support
- Adaptive Optics on Coudé-Bench

Characterization of the atmosphere

 Measurement instruments for recording of key atmospheric parameters

Development OGSOP-NG

Development OGSOP-NG

Coudé-Bench

OGSOP – Coudé room with adaptive optics

AO System Concept

Meas. with Alphasat-LCT

With AO

Coudé Laboratory

OGS Software Overview

Software Main Features

Software User Interface

File Control Ma	in Gଆ 👓	Visual Tracke	r
i i i i i i i i i i i i i i i i i i i		Visual Tracker	• © 0
Scanning	Target Position		
Velocity 30,000000 °/s 📜 U 0,0000 °	\$ Satellite		
Increment 0,028000 °/round 🗘 V 0,0000 ° 🖓			
Radius U 20,000000 °	Select Satellite Starlink 2210		
Radius V 20,000000° 🕻 🗄 Stop Start Clear	TLE		
🧭 Manual			
Fixed	Line 2 24/1/1 53.0530 125.7894 0001575 62.3503 145.3764 15.06367369 10		
	Time Horizontal Coordinates		
V 0,0000 · ·	Universal Time 07:52:58 Azimuth 126.858088*		
Joystick	Local Time 08:52:58 Elevation 5.727723 °		
U 0,0000°	Julian Date 2459604.82846		
1,000000 7/S -			
Time offset 0,00 ms	:		
Camera			
dU 0.000000 ° U 0.000000 ° Camera Only	Target Position	Camera - 100 fps 😽 Target Position Spot Spot Parameters Visualization R	otation Calibration 😽 Statistics
dV 0.000000 ° V 0.000000 ° Reset Total	AZ 126.858288 EL 5.728554	IntegrationTime: 0 ms X: 160 px Y: 128 px dX: dY: Minimum size: 2 Image Display Rate 100 % High Gain Inner Circle ø 1,00 mrad 135 px 140 px Maximum size: 50 Ø Auto Background Color	Point 1 Point 2 Min Cycle Time 2.31 ms Rotation: 0.00 * Max Cycle Time 4.51 ms
Mount	0 126.858288 V 5.728554	Rotation 0.00* Outer Circle o 2.00 mrad -0.0215* 0.0109* Threshold: 128 Store Images	Angle: 0.00*
Instrumental Horizontal	Own Position		
U 126.858102° Az 126.858102°	Fixed		
V 5.727761° El 5.727761°	GPS Target Position IMU		
State Velocity	Latitude 48,084680° 2 Yaw 0,000000° 2		
U Tracking U -0.019869°	Longitude 11,278150° 🗘 Pitch 0,000000° 💭		
V Tracking V -0.082763 *	Height 594,000000 m . Roll 0,000000 ° .		

Before correction After correction **OGS Pointing Model GUI** Status Calculation Measurement Time Reload UT !022-01-25 07:53:53 RA 2000 Elv Magnitude ID Name Dec 2000 Az LocT :022-01-25 08:53:53 **HR 15** Alp And 0:08:23.30 29:05:26.0 57:35:25.8 10:36:44.7 2.1 JD 1 0.00000 SidT 0:00:00 2 **HR 21** Bet Cas 0:09:10.70 59:08:59.0 34:59:58.3 32:13:49.6 2.3 HR 153 0:36:58.30 53:53:49.0 25:49:33.4 3 Zet Cas 36:11:27.9 3.7 WGS 84 Position Lon 0:00:00.0 Alt 0.0 Del And 4 HR 165 0:39:19.70 30:51:39.0 51:10:57.0 7:48:39.0 3.3 Lat 0:00:00.0 HR 168 5 Alp Cas 0:40:30.50 56:32:14.0 33:47:02.1 27:26:04.2 2.2 STOPPED 6 HR 219 Eta Cas 0:49:06.00 57:48:57.0 31:50:37.7 27:36:08.1 3.4 **Equatorial Coordinates** 7 HR 264 Gam Cas 0:56:42.50 60:43:00.0 28:49:53.4 29:07:37.6 2.5 RA 0:00:00.00 Dec 0.0 8 HR 269 Mu And 0:56:45.20 38:29:58.0 43:37:55.4 11:45:01.9 3.9 HA 0.0 ParA 0.0 9 HR 337 Bet And 1:09:43.90 35:37:14.0 43:10:19.3 7:56:11.7 2.1 10 HR 403 Del Cas 1:25:49.00 60:14:07.0 26:01:16.0 26:30:12.5 2.7 **Horizontal Coordinates** 11 HR 424 Alp UMi 2:31:48.70 89:15:51.0 0:27:52.5 47:32:30.2 2.0 0.0 Elv 0.0 Az 12 HR 464 1:37:59.60 48:37:42.0 31:25:59.9 15:55:17.9 3.6 Instrumental Coordinates **Telescope Control** U 0.0 UOFF 0.0 Track Stop Acquire Measurement v 0.0 VOFF 0.0 Measurement

Tracking accuracy up to 10µrad has been achieved as a result of good calibration

Calibration

Pointing model is calculated with the help

- Simple Pointing Model
- Classic Pointing Model
- Extended Pointing Model

Requirement for good calibration:

- Enough star measurements
- Uniform distribution of targets in the sk
- Accurate timing of the system

Satellite Based QKD

Why Satellite? → bridge large distances

- FSO and QKD enable worldwide fast and secure data communications
- Why QKD over FSO? → use of fiber is range limited → QKD using satellite node with QKD relay protocol
- Combination of FSO and QKD technology in one device → high synergies → lower costs
- QKD schemes: Distrete varibale (BB84) or continuous variable (and various others..)

BB84 Story Satellite Experiment with Micius (since 2016)

						1 Inter-				
Λ	<i>Micius –</i> Graz	z, Austria								
Date	Sifted key	QBER	Final key							
06/18/2017	1361 kb	1.4%	266 kb				М	<i>licius –</i> Xinglo	ong, Chir	ia i
06/19/2017	711 kb	2.3%	103 kb		Col.	Co-	Date	Sifted key	QBER	Final key
06/23/2017	700 kb	2.4%	103 kb		3		06/04/2017	279 kb	1.2%	61 kb
06/26/2017	1220 kb	1.5%	361 kb	/			06/15/2017	609 kb	1.1%	141 kb
		16		7600)km		06/24/2017	848 kb	1.1%	198 kb
			Mi	<i>cius –</i> Nansł	nan, Chin	a				
	1		Date	Sifted key	QBER	Final key		and the second	1	
1.58	all at	-	05/06/2017	1329 kb	1.0%	305 kb		SUUKM	SA A	10
	and the		07/07/2017	1926 kb	1.7%	398 kb	the state		C. R. P.	A A
1112		Sinte Tro	8 76	the the	19	and the second	The se	- This	Can 1	A Sec

Liao et al. Satellite-Relayed Intercontinental Quantum Network Phys. Rev. Lett., American Physical Society, 2018, 120, 030501

esa

Further Reading and Lectures:

- S.G. Lambert, W.L. Casey, "Laser Communications in Space", Artech House, 1995
- B.J. Klein, J.J. Degnan, "Optical Antenna Gain. 1: Transmitting Antennas", Applied Optics Vol. 13(9), 1974
- W.K. Pratt, "Laser Communication Systems", Wiley publishing, 1969
- L.C. Andrews, R.L. Phillips, "Laser beam propagation through random media", SPIE-Press 2005
- D. Giggenbach, F. Moll, C. Fuchs, C. Schmidt, A. Shrestha, "Optical on-off keying data links for low Earth orbit downlink applications", Chapter in 'Satellite Communications in the 5G Era', Editors S. K. Sharma, S. Chatzinotas, P-D Arapoglou, IET TELECOMMUNICATIONS SERIES, 2018
- D. Giggenbach, F. Moll, "Scintillation Loss in Optical Low Earth Orbit Data Downlinks with Avalanche Photodiode Receivers", IEEE-Xplore, Int. Conf. on Space Optical Systems 2017 (ICSOS), 2017
- D. Giggenbach, A. Shrestha, "Atmospheric Absorption and Scattering Impact on Optical Satellite-Ground Links" Int. Jnl. of Satellite Communications And Networking, 2021
- S. Scalise, T. de Cola, "Satellite Communications", yearly lecture at TUM, Winter Semester
- *M. T. Knopp, "Optical Communications", yearly lecture at UniBW-Munich*
- D. Giggenbach, N. Hanik, C. Fuchs, R. Mata-Calvo, "Optische Kommunikation für Satelliten und Flugzeuge", yearly course at Carl-Cranz-Gesellschaft CCG, Wessling

Impressum

Торіс:	Optical Satellite Links at DLR Overview about the Optical Satellite Links department at DLR's Institute of Communications and Navigation
Date:	10.09.2024
Authors:	Amita Shrestha (amita.shrestha@dlr.de) et. Al.
Institute:	Institute of Communications and Navigation
Piccredits:	DLR

