

Introduction to Turbulence theory & Adaptive Optics

Dr. David Alaluf: [David.Alaluf@esa.int,](mailto:David.Alaluf@esa.int)

Opto-electronics section (TEC-MME) of ESA/ESTEC

PTQCI Summer School 12 Septembre 2024, Lisbon

INCLASSIFIED – Releasable to the Public

Image of a star: Speckling & Dancing

Goal of Adaptive Optics is to compensate for atmospheric turbulence

÷

+ THE EUROPEAN SPACE AGENCY

Outline

- 1. General Introduction
- 2. Atmospheric turbulence
	- a) Introduction
	- b) Characterization of the turbulence
- 3. Adaptive Optics
	- a) Deformable mirrors
	- b) Wavefront Sensors
	- c) Control
	- d) Laser Guide Star
- 4. Examples

→ THE EUROPEAN SPACE AGENCY

Introduction

----**ちゅぼ** $rac{N}{N}$ ÷ $\left| \cdot \right|$ æ i I $\left| + \right|$ **Part** \equiv ш . . =

+ THE EUROPEAN SPACE AGENCY

Why do we need Adaptive Optics (AO) ?

Sometimes we don't, or we need a simple/partial AO compensation

- \rightarrow The AO system depends on the application e.g:
	- Classical comm. / Quantum comm. ?
	- Which data rates ?
	- Which reliability ?
	- Which environment (night, day, city center, rooftop etc) ?
	- Which scenario (uplink, downlink, GEO, LEO etc) ?
	- Which wavelength(s) ?
	- Which telescope diameter ?
	- Which budget ?

 \bullet …..

The AO system depends on the application

Impact of atmospheric turbulence (I)

Light coming from a satellite get distorted because of atmospheric turbulence \rightarrow Aberrations

→ The rays reaching the telescope are not anymore parallel → Cannot be focused in a sharp spot → Blurred spot

Aberrations (II)

FRIDA 隼 - 32 CD **P** $rac{N}{N}$ $\left| \cdot \right|$ \sim $\left\| \frac{1}{2} \right\|$ H H **DO** = = . . ▅ . . œ a a shekara . . — ⊏

+ THE EUROPEAN SPACE AGENCY

Downlink: • Phase distortion

- Spot "dancing"
- Speckling (random intensity)
- → Deteriorates the coupling of the light in the optical fiber (≈6µm !) / detector

Uplink:

- Beam Wander (random deviation of the beam, can even miss the satellite !)
- Spreading of the beam
- Speckling (random intensity)
- \rightarrow Deteriorates the stability of the power received by the satellite

Impact: Fades/Surges in the signal \rightarrow transmission errors !

Asymmetric effects for up & down links

Impact of atmospheric turbulence (II): up & down effects

Downlink

Uplink

Impact of atmospheric turbulence (III): illustration

The average irradiance is important as well as its variance

M ÷

Reminder: Telescope

- A telescope collect only a tiny part of the emitted light of source and focus it
- The bigger the telescope:
	- o The more light (photons) it collects
	- o The better is its resolution

→ THE EUROPEAN SPACE AGENCY

Diffraction

Because a telescope cannot collect all the light emitted by a ponctual source, the image on the detector is not a perfect point but an "Airy spot" \rightarrow decreases the resolution

Atmospheric Turbulence

HE H. $\left\langle \mathbf{r}\right\rangle$ N 1 ≝≡ $rac{N}{N}$ 53 ═ a seri ═ ▭

+ THE EUROPEAN SPACE AGENCY

Atmospheric turbulence

Turbulence

---运 三 - 32 C $rac{N}{N}$ **SHELL** $|| \cdot ||$ œ a a shekara **DO** E ═ Ħ . .

Atmospheric turbulence

Chaotic movement of air, resulting in fluctuations of the atmospheric index of refraction \rightarrow Wavefront error (phase) \rightarrow Intensity fluctuations (e.g twinkling of the stars) = Optical turbulence

- •2 required ingredients for turbulence: \cdot ΔT
	- Wind
- 2 effects:
	- Wavefront distortions (phase)
	- Scintillation (Random optical lenses) (amplitude)

Atmospheric turbulence impacts both the phase & intensity of the beam

Example of atmospheric effect

 $\left| \cdot \right|$

→ THE EUROPEAN SPACE AGENCY

Kolmogorov theory of turbulence

Mathematical difficulty of atmospheric turbulence **Kolmogorov developed a statistical theory/description of turbulence (1941)**

Atmosphere is a viscous fluid

Wind velocity wintil Reynolds number exceeded

Creates local unstable air masses ("**Eddies**")

Under the influence of inertial forces, Eddies break up into smaller eddies to form a continuum of eddy size for the transfer of energy from a macroscale L0 to a microscale l0, dissipated as heat due to friction.

16

Figure 3.10: Energy transfer cascade based on the Kolmogorov theory.

Characterization of the turbulence (I): the "Seeing"

The seeing gives the strength of the turbulence Seeing (ε0) = FWHM of the long exposure spot The seeing = achievable resolution of the telescope in presence of turbulence

+ THE EUROPEAN SPACE AGENCY

Characterization of the turbulence (II): the "Seeing"

With turbulence: image of a star looks very different through telescopes of different apertures

- Small telescope: image looks like diffraction limited (figure a)) & "dance"
- Large telescope:
	- Short exposure: many corrugations but image frozen (figure b)) = speckles
	- Long exposure (seeing): many corrugations exposed over a long time (\sim 1min) produces a blurred image. Figure c).

+ THE EUROPEAN SPACE AGENCY

Characterization of the turbulence (III): Fried parameter (r0)

- $r0$ = length of coherent cells (i.e rms WFE = 1 radian) $=$ integrated turbulence along the line of sight.
- Directly related to the seeing by: $r0 = 0.98 \frac{\lambda}{\epsilon 0}$
- Small r0 \rightarrow Strong turbulence
- $r0(\lambda 1)=r0(\lambda 0)$ ($\frac{\lambda 1}{\lambda 0}$)6/5
- Typical values (at $\lambda = 500$ nm) are r0 = 10cm

r0 is the length of a "flat" part of wavefront, AO easier at large wavelengths Without AO, a large telescope does not have a better resolution than a telescope of diameter r0

Piecewise linear fit

+ THE EUROPEAN SPACE AGENCY

 $\overline{}$

Characterization of the turbulence (III): Isoplanatic angle (Θ0)

- The wavefront error depends on the line of sight
- Θ0 is the angular separation in the sky at which 2 WFE are considered as nearly identical (1rad RMS)
- Small isoplanatic angle \rightarrow Strong turbulence
- Θ0(λ1)= Θ0(λ0) ($\frac{\lambda_1}{\lambda_0}$)6/5
	- Typical values (at λ =500nm): a few arcsec

The isoplanatic angle is especially important for uplinks

→ THE EUROPEAN SPACE AGENCY

- A measure of the timescale on which the wavefronts change by 1 rad RMS.
- The smaller the coherence time, the faster is the evolution of the turbulence, the more difficult it is to compensate for it.
- The larger the wavelength of interest, the larger τ 0 as: τ 0(λ 1)= τ 0(λ 0) ($\frac{\lambda1}{\lambda0}$)6/5
- Typical values (at 500nm): a few milliseconds

The wavefront evolves in a very fast way : ~ ms !

Characterization of the turbulence (III): Scintillation index (σ_{I} **)**

22

- The scintillation index is related to fluctuations in the intensity at any position on the wavefront. It is defined as the ratio $\sigma_{\rm I} = \frac{Var I}{\langle I \rangle^2}$ $\langle I \rangle^2$
- Large scintillation have impact on the optical fiber injection efficiency
- The bigger the telescope diameter the smaller the scintillation (aperture averaging !)
- $\sigma_{\rm I}(\lambda 1) = \sigma_{\rm I}(\lambda 0) \left(\frac{\lambda 1}{\lambda 0}\right)$) -7/6
- Typical values (at 500nm) are of the order of 10-20%.

The scintillation is less important for large telescopes because of spatial averaging

Characterization of the turbulence (III): Refractive index structure constant Cn²(h)

- Measure of the strength of the optical turbulence as a function of the altitude
- The variance of the difference between two values of the refractive index is given by $D_N(\rho) = \frac{1}{n(r)} - \frac{n(r + \rho)}{2} = \frac{Cn^2 \rho^{2/3}}{2}$
- The integrated parameters can be calculated with $Cn²(z)$
- Typical values of Cn² range from 10^{-13} m^{-2/3} near the ground to 10^{-17} m^{-2/3} an altitude of 10 km (for classical astronomical sites).
- For non-astronomical sites (e.g optical comm.), it can be much worse and depend much on the location & time

Most of the turbulence occurs at low altitudes (~ first kms)

+ THE EUROPEAN SPACE AG

Integrated parameters from Cn²(h)

Dependency of the parameters as a function of the zenith angle γ (90°-elevation) ɣ

*** + + = = = + -------TEBE®** \blacksquare ▅ E . .

Monitoring equipment

Equipment to monitor integrated & Cn2(h) parameters

Robotic equipment

First continuous measurements in urban environment during day & night!

Monitoring equipment

Deployed in Atlice-Sintra in June 2024

For 1 year campaign

GPS: 38°52'08.4"N 9°16'57.9"W

Similar equipment deployed in:

- Observatoire de la cote d'Azur, Fr
- Madrid, Spain
- Catania, Italy

→ THE EUROPEAN SPACE AGENCY

Monitoring equipment

HZ \blacksquare ⊢ $rac{N}{N}$ I÷I ≃ ═ ▅

+ THE EUROPEAN SPACE AGENCY

Adaptive Optics

\blacksquare \blacksquare 82 \sim 等 $rac{N}{N}$ H. $\left\lceil \frac{1}{2} \right\rceil$ $|| \cdot ||$ ю ═ . . ▭ H I ▅ ᆖ \bullet D ═

Adaptive Optics (AO)

- Atmospheric turbulence effects were already observed by Aristote (350BC) observing the twinkling of stars
- AO aims at compensating turbulence induced aberrations
- First envisioned by W.Babock in 1953 for astronomy
- Initial developments for military for satellite tracking
- From 1990s developments for telescopes
- Many applications e.g: Astronomy, Optical communication, Ophthalmology, Microscopy
- AO can be considered for space to compensate for T° distortion, gravity release, manufacturing errors

VLT AO off VLT AO on Hubble Image

AO off AO on

Adaptive Optics

E

For downlinks:

One wants to (post) compensate the wavefront distortion

For upnlinks:

One wants to (pré) compensate the wavefront distortion

Issue: Point ahead angle

+ THE EUROPEAN SPACE AGENCY

Any wavefront distortion can be decomposed in a set of orthogonal & complete basis e.g Zernike Modes

Random phase**= 2.1 * + 3.2 * + …** Astigmatism **Defocus**

+ THE EUROPEAN SPACE AGENCY

Zernike modes (II): Aberrations

≃

═

▅

═

 $rac{N}{N}$ \pm \blacktriangleright + THE EUROPEAN SPACE AGENCY

Zernike Modes (III)

÷ HE HZ $\frac{N}{2}$ \blacksquare $|| \cdot ||$ = ═ æ ═ ▅

Important examples:

- Piston = Just a constant phase, often neglected
- \cdot Tilt = Angle of arrival of the wavefront
- Defocus = wrong focus (like in cameras)

Zernike modes (V): Zernike coefficients

M + THE EUROPEAN SPACE AGENCY

Zernike Modes (VI): Analytical formulas

Œ **E** 15 **EST** 22 Z Z $rac{N}{N}$ ╊ \blacksquare $|| \cdot ||$ H — ═ . . ⊏ w

+ THE EUROPEAN SPACE AGENCY

Wavefront Error (WFE) formulas

Deformable Mirrors (I): Principle

HE 82 ÷ \sim $rac{N}{N}$ $\left| \cdot \right|$ $|| \cdot ||$ ≝ \bullet \blacktriangleright ═ ▅ w œ ▅ ═

Deformable Mirrors (II): e.g Piezoelectric technology

Figure 1.15: Left: The bimorph mirror is made of two active layers (with opposite polarity) bonded together. When a voltage is applied on the positive electrode, one layer shrinks, while the other one extends resulting in the bending of the mirror. Right: The unimorph mirror is made of only one active layer bonded to a passive substrate which bends when a voltage is applied on the active layer.

M

+ THE EUROPEAN SPACE AGENCY

Deformable Mirrors (III): examples (Large, small, continuous, segmented, piezo, voice coils etc)

F 12 HZ \blacksquare ≝ $rac{N}{N}$ 5-M ▅ ᆖ ▅

Deformable Mirrors (IV) – some Trade-offs

Many actuators

Stroke

Optical coating

Small DM

Performance

Good WFE control

Large

Large wavelength band

Less bulky

Good

SNR per actuator & Latency & Complexity Slow & Resonance freq. & Required power **Complexity**

More sensitive to aberrations

Cost

The DM must be properly dimensioned, not always good to have "the best" DM Rule of thumb: "one actuator per r0"

→ THE EUROPEAN SPACE AGENCY

 $D = 8 m$

2021 H. II Listen se $rac{1}{28}$ $rac{1}{8}$ $rac{1}{8}$ $rac{1}{8}$ **Participation** $\parallel \bullet \parallel$ + THE EUROPEAN SPACE AGENCY H . . \bullet = ═ . . ▭ n e —

Wavefront sensors (I) – most famous: Shack-Hartmann

Figure reference: "Adaptive optics in Astronomy" by Francois Roddier

+ THE EUROPEAN SPACE AGENCY

ŁН

Wavefront sensors (II)

-------- \blacksquare $\frac{3k}{2}$ + $\left\| \cdot \right\|$ **. .** E = = m .

Wavefront sensors (III) – some Trade-offs

Many microlenslets Good WFE measurement

Dynamics

Chromaticity

Small WFS

Performance

Large

Large wavelength band

Less bulky

Good

Low SNR per microlens & Latency & Complexity Slow **Complexity** More sensitive to aberrations

The WFS must be properly dimensioned Trade-off between spatial & temporal resolution Rule of thumb: "one lens per actuator on the DM"

Cost

→ THE EUROPEAN SPACE AGENCY

E 15 $+$ 一 $\frac{N}{2}$ Ť \sim $|| \cdot ||$ 8 I I ╺╈ **State D** ═ . . ▅ w a na

+ THE EUROPEAN SPACE AGENCY

48

$\varphi_{\text{res}}(x, y, t) = \varphi_{\text{tur}}(x, y, t) - \varphi_{\text{corr}}(x, y, t) \rightarrow \varphi_{\text{res}}/\varphi_{\text{turb}}$ needs to be minimized

Goal: compute the voltages to be applied to the actuators of the DM, in order to deform it to obtain specific target surface. Mainly used: **zonal** or **modal** control

Steps:

- 1. Influence function: poking each actuator one by one separately with a unit voltage & measuring the local deformation with a WFS
- 2. Construction of a matrix (**J**): one column per actuator and the rows contain the unitary deformation in each grid point
- 3. "We know that when we apply unit voltage, we obtain **J**. So which voltage **v** should be applied to obtain any other shape **w** ?" **w** contains the local deformations
- 4. Superposition principle: **w = J v** $\rightarrow v = J^{-1} w$ (but J difficult to invert)

→ THE EUROPEAN SPACE AGENCY

Steps:

0. Any shape can be decomposed in ZM

- 1. Poking each actuator one by one with a unit voltage & the deformation produced is decomposed in ZM, e.g $2.1*$ Defocus + $3.2*$ Astigmatism +...
- 2. Construction of a matrix (**J**): one column per actuator and every row contains the coefficients of each modes (2.1, 3.2, ….).
- 3. "We know that when we apply unit voltage, we obtain this combination of ZM. So which voltage **v** should be applied to obtain any other combination of ZM, **w** ?" **w** contains the ZM coefficients of the desired shape.
- 4. Superposition principle: **w = J v**
	- $\rightarrow v = J^{-1} w$ (but J difficult to invert)

+ THE EUROPEAN SPACE AGENCY

Control (IV)

- Correction efficiency given by transfer function of φ_{res} / $\varphi_{\text{turb.}}$
- Major limitation of AO performance:
	- o Time delays: $\sigma \propto \frac{\tau_D}{\tau_D}$ τ_{O} 5/3
	- o Control bandwidth frequency: σ ∝ $\frac{\tau_{\mathbf{0}}}{\sigma_{\mathbf{0}}}$ $f_{\mathcal{C}}$
- Trade-off between:
	- Correction performance & stability
	- Control bandwidth & noise
- Optimization of the loop in real time as a function of the strength of the turbulence

5/3

 \rightarrow Monitoring equipment

→ THE EUROPEAN SPACE AGENCY

Reference in the sky

- Goal: use bright star in the sky close to the object of interest, to be used as a reference to measure the turbulence with the WFS
- Issue: The amount of bright stars close to the object is small
- Possible solutions:
	- Use the downlink beam of a satellite to be used as reference
	- Create an artificial star wherever we want !
		- Sodium Guide Star
		- Rayleigh Guide Star
	- Not use any reference & increase beam divergence

"Artificial Star" (as a reference) – Sodium Guide Star

Alternative to Sodium Guide Star: Rayleigh Guide Star

Adaptive Optics: Example (I)

e e 隼 HZ $\left| + \right|$ $\left| \cdot \right|$ $rac{N}{N}$ \pm $|| \cdot ||$ 8 I œ **Part** ═ m ⊏ a s . . ▭ \bullet ═

Adaptive Optics: Example (I)

HE. ÷ H $rac{N}{N}$ \blacksquare $|| \cdot ||$ = æ ═ ▅

+ THE EUROPEAN SPACE AGENCY

- Performance metrics:
	- \circ Strehl ratio (SR): $\frac{Peak}{Peak}$ intensity nerfect sne Peak intensity perfect spo
	- o Power coupled in a single mode optical fibre
	- (e.g 1m telescope, GEO, 5W downlink, 100s nW, 20% efficiency)
- When AO performs well: more energy in the fibre
- $0 \leq SR \leq 1$ & High SR \rightarrow Better quality
- SR gives an approx. of the coupled power
- Marechal Approx.:

$$
SR \approx e^{-\sigma_{\varphi}^2} \qquad \sigma_{\varphi} = 2\pi \frac{\text{WFE}}{\lambda}
$$

Possibilities of traineeships PhD PostDoc

David.Alaluf@esa.int

www.esa.int

5858