

Introduction to Turbulence theory & Adaptive Optics

Dr. David Alaluf: David.Alaluf@esa.int,

Opto-electronics section (TEC-MME) of ESA/ESTEC

PTQCI Summer School

12 Septembre 2024, Lisbon

→ THE EUROPEAN SPACE AGENCY

ESA UNCLASSIFIED – Releasable to the Public

Image of a star: Speckling & Dancing

Goal of Adaptive Optics is to compensate for atmospheric turbulence

Outline

- 1. General Introduction
- 2. Atmospheric turbulence
 - a) Introduction
 - b) Characterization of the turbulence
- 3. Adaptive Optics
 - a) Deformable mirrors
 - b) Wavefront Sensors
 - c) Control
 - d) Laser Guide Star
- 4. Examples

Introduction

Why do we need Adaptive Optics (AO)?

Sometimes we don't, or we need a simple/partial AO compensation

- \rightarrow The AO system depends on the application e.g.
 - Classical comm. / Quantum comm. ?
 - Which data rates ?
 - Which reliability ?
 - Which environment (night, day, city center, rooftop etc) ?
 - Which scenario (uplink, downlink, GEO, LEO etc) ?
 - Which wavelength(s) ?
 - Which telescope diameter ?
 - Which budget ?

٠

. . . .

→ The AO system depends on the application

Impact of atmospheric turbulence (I)

→ THE EUROPEAN SPACE AGENCY

Light coming from a satellite get distorted because of atmospheric turbulence -> Aberrations

 \rightarrow The rays reaching the telescope are not anymore parallel \rightarrow Cannot be focused in a sharp spot \rightarrow Blurred spot

Aberrations (II)

#= = • * 0 +

Uplink:

- Beam Wander (random deviation of the beam, can even miss the satellite !) •
- Spreading of the beam
- Speckling (random intensity)
- → Deteriorates the stability of the power received by the satellite

<u>Impact</u>: Fades/Surges in the signal \rightarrow transmission errors !

→ Asymmetric effects for up & down links

Impact of atmospheric turbulence (II): up & down effects

Downlink:

- Phase distortion
- Spot "dancing" •
- Speckling (random intensity)
- \rightarrow Deteriorates the coupling of the light in the optical fiber ($\approx 6\mu m$!) / detector

turbulences

→ THE EUROPEAN SPACE AGENCY

Uplink

Uplir

sign

Impact of atmospheric turbulence (III): illustration

The average irradiance is important as well as its variance

Reminder: Telescope

- A telescope collect only a tiny part of the emitted light of source and focus it
- The bigger the telescope:
 - The more light (photons) it collects
 - \circ $\,$ The better is its resolution

Diffraction

Because a telescope cannot collect all the light emitted by a ponctual source, the image on the detector is not a perfect point but an "Airy spot" \rightarrow decreases the resolution

Atmospheric Turbulence

Atmospheric turbulence

Turbulence

Chaotic movement of air, resulting in fluctuations of the atmospheric index of refraction
 → Wavefront error (phase) → Intensity fluctuations (e.g twinkling of the stars)
 = Optical turbulence

- 2 required ingredients for turbulence:
 ΔT
 - Wind
- 2 effects:
 - Wavefront distortions (phase)
 - Scintillation (Random optical lenses) (amplitude)

Atmospheric turbulence impacts both the phase & intensity of the beam

Example of atmospheric effect

Kolmogorov theory of turbulence

Mathematical difficulty of atmospheric turbulence Kolmogorov developed a statistical theory/description of turbulence (1941)

Atmosphere is a viscous fluid

Wind velocity / until Reynolds number exceeded

→ Creates local unstable air masses ("Eddies")

Under the influence of inertial forces, Eddies break up into smaller eddies to form a continuum of eddy size for the transfer of energy from a macroscale L0 to a microscale I0, dissipated as heat due to friction.

orn	Andrey Nikolaevich Kolmogorov 25 April 1903 Tambov, Russian Empire
ied	20 October 1987 (aged 84) Moscow, Soviet Union
itizenship	Soviet Union
ationality	Soviet Union
ields	Mathematics

Figure 3.10: Energy transfer cascade based on the Kolmogorov theory.

Characterization of the turbulence (I): the "Seeing"

The seeing gives the strength of the turbulence Seeing (ε0) = FWHM of the long exposure spot The seeing = achievable resolution of the telescope in presence of turbulence

━ ━ ■ ■ ₩ ━ = ₩ ■ ₩ = ■ ■ ■ ₩ = = ₩ = ■ ■ ₩ += ■ = = = ₩

Characterization of the turbulence (II): the "Seeing"

With turbulence: image of a star looks very different through telescopes of different apertures

- Small telescope: image looks like diffraction limited (figure a)) & "dance"
- Large telescope:
 - Short exposure: many corrugations but image frozen (figure b)) = speckles
 - Long exposure (seeing): many corrugations exposed over a long time (~1min) produces a blurred image. Figure c).

Characterization of the turbulence (III): Fried parameter (r0)

- r0= length of coherent cells (i.e rms WFE = 1 radian)
 integrated turbulence along the line of sight.
- Directly related to the seeing by: $r0 = 0.98 \frac{\lambda}{\epsilon 0}$
- Small r0 → Strong turbulence
- $r0(\lambda 1) = r0(\lambda 0) \left(\frac{\lambda 1}{\lambda 0}\right)^{6/5}$
- Typical values (at $\lambda = 500$ nm) are r0 = 10 cm

r0 is the length of a "flat" part of wavefront, AO easier at large wavelengths Without AO, a large telescope does not have a better resolution than a telescope of diameter r0

Piecewise linear fit → r₀ ← Phase Φ

- The wavefront error depends on the line of sight
- O0 is the angular separation in the sky at which 2 WFE are considered as nearly identical (1rad RMS)
- Small isoplanatic angle → Strong turbulence
- $\Theta O(\lambda 1) = \Theta O(\lambda 0) \left(\frac{\lambda 1}{\lambda 0}\right)^{6/5}$
 - Typical values (at $\lambda = 500$ nm): a few arcsec

The isoplanatic angle is especially important for uplinks

= ____ || += ____ == 1= || ±= == || || == += == || || >= || >| >| >| += == == == == ++ → THE EUROPEAN SPACE AGENCY

20

- A measure of the timescale on which the wavefronts change by 1 rad RMS.
- The smaller the coherence time, the faster is the evolution of the turbulence, the more difficult it is to compensate for it.
- The larger the wavelength of interest, the larger $\tau 0$ as: $\tau 0(\lambda 1) = \tau 0(\lambda 0) (\frac{\lambda 1}{\lambda 0})^{6/5}$
- Typical values (at 500nm): a few milliseconds

The wavefront evolves in a very fast way : ~ ms !

Characterization of the turbulence (III): Scintillation index (σ_I)

- The scintillation index is related to fluctuations in the intensity at any position on the wavefront. It is defined as the ratio $\sigma_{I} = \frac{Var I}{\langle I \rangle^{2}}$
- Large scintillation have impact on the optical fiber injection efficiency
- The bigger the telescope diameter the smaller the scintillation (aperture averaging !)
- $\sigma_{\rm I}(\lambda 1) = \sigma_{\rm I}(\lambda 0) \left(\frac{\lambda 1}{\lambda 0}\right)^{-7/6}$
- Typical values (at 500nm) are of the order of 10-20%.

The scintillation is less important for large telescopes because of spatial averaging

-0.5-0.4-0.3-0.2-0.1E0.10.2-0.10.10.2-0.10.10.2-0.10.10.2-0.10.10.2-0.10.10.2-0.10.10.2-0.10.10.20.10.20.10.20.10.20.10.20.10.20.10.20.10.20.10.20.10.20.10.20.10.20.10.20.30.4 0.5-0.5 -0.4 -0.3 -0.2 -0.1 00.1 0.2 0.3 0.4 0.5

Characterization of the turbulence (III): Refractive index structure constant Cn²(h)

- Measure of the strength of the optical turbulence as a function of the altitude
- The variance of the difference between two values of the refractive index is given by $D_N(\rho) = \langle |n(r) - n(r + \rho)|^2 \rangle = Cn^2 \rho^{2/3}$
- The integrated parameters can be calculated with Cn²(z)
- Typical values of Cn² range from 10⁻¹³ m^{-2/3} near the ground to 10⁻¹⁷ m^{-2/3} an altitude of 10 km (for classical astronomical sites).
- For non-astronomical sites (e.g optical comm.), it can be much worse and depend much on the location & time

Most of the turbulence occurs at low altitudes (~ first kms)

Integrated parameters from Cn²(h)

$$r_{0} = \left[0.423k^{2} \sec\left(\gamma\right) \int_{0}^{\infty} C_{n}^{2}(h) dh \right]^{-3/5}$$

$$\theta_{0} = \left[2.91k^{2} \cos^{-8/3}(\gamma) \int_{0}^{\infty} C_{n}^{2}(h) h^{5/3} dh \right]^{-3/5}$$

$$\tau_{0} = 0.314 \frac{r_{0}}{\overline{V}_{5/3}}, \quad \overline{V}_{5/3} = \left[\frac{\int_{0}^{\infty} V(h)^{5/3} C_{n}^{2}(h) dh}{\int_{0}^{\infty} C_{n}^{2}(h) dh} \right]^{3/5}$$

$$\sigma_{R}^{2} = 19.12\lambda^{-7/6} \sec^{11/6}(\gamma) \int_{0}^{\infty} h^{5/6} C_{n}^{2}(h) dh,$$

Monitoring equipment

Equipment to monitor integrated & Cn2(h) parameters

Robotic equipment

First continuous measurements in urban environment during day & night!

Monitoring equipment

Deployed in Atlice-Sintra in June 2024

For 1 year campaign

GPS: 38°52'08.4"N 9°16'57.9"W

Similar equipment deployed in:

- Observatoire de la cote d'Azur, Fr
- Madrid, Spain
- Catania, Italy

Monitoring equipment

Adaptive Optics

Adaptive Optics (AO)

AO on

- Atmospheric turbulence effects were already observed by Aristote (350BC) observing the twinkling of stars
- AO aims at compensating turbulence induced aberrations
- First envisioned by W.Babock in 1953 for astronomy
- Initial developments for military for satellite tracking
- From 1990s developments for telescopes
- Many applications e.g: Astronomy, Optical communication, Ophthalmology, Microscopy
- AO can be considered for space to compensate for T^o distortion, gravity release, manufacturing errors

AO off

💳 🔜 📕 🚝 💳 🔚 📕 🚝 🔜 📕 📕 🚍 👫 📥 🖬 🚱 🎽 📲 🗮 🗮 🗮 🗮 👘

Adaptive Optics

For downlinks:

One wants to (post) compensate the wavefront distortion

For upnlinks:

One wants to (pré) compensate the wavefront distortion

Issue: Point ahead angle

Any wavefront distortion can be decomposed in a set of orthogonal & complete basis e.g Zernike Modes

Random phase = 2.1 *

Zernike modes (II): Aberrations

💳 📕 🚼 🧮 🔚 🗮 📕 📕 📕 📕 📲 📲 层 🔤 层 🚱 🔤 🔤

33

Zernike Modes (III)

Important examples:

- Piston = Just a constant phase, often neglected
- Tilt = Angle of arrival of the wavefront
- Defocus = wrong focus (like in cameras)

💳 🔜 📕 🚝 🚍 🔚 🗮 💳 🔲 📕 🚍 👭 🚍 🗮 🔤 🔤 🔤 🚱 🔤 🖉

Zernike modes (V): Zernike coefficients

💳 🖬 🚼 💳 🔚 🔚 🖆 🔚 🖆 🔚 🔚 📥 🚼 🔤 🔤 🔤 🚱 🔽 🚺 💥 🛨 🖬 🔤 🔤 👘 🖉

Zernike Modes (VI): Analytical formulas

		Table 5.2 The first 36 Zernike polynomials			
		n m	i	$Z_n^m(r,\theta)$	Name
		0 0	1	1	piston
		1 1	2	$2 r \cos \theta$	x tilt
		1 1	3	$2r\sin\theta$	<i>y</i> tilt
		2 0	4		defocus
$\left(\frac{1}{2} \left(1 + 1 \right) Dm \left(\right) Cm \left(0 \right) \right)$		2 2	5	$\sqrt{6} r^2 \sin\left(2\theta\right)$	y primary astigmatism
$\sqrt{2(n+1)}R_{n}^{m}(r)G^{m}(\theta) m \neq 0$		2 2	6	$\sqrt{6} r^2 \cos\left(2\theta\right)$	x primary astigmatism
$Z_{i}(r,\theta) = \begin{cases} \sqrt{2(n+1)} R_{n}^{m}(r) G^{m}(\theta) & m \neq 0\\ R_{n}^{0}(r) & m = 0 \end{cases}.$		3 1	7	$\sqrt{8} \left(3r^3 - 2r\right)\sin heta$	y primary coma
$\sum_{i=1}^{n} (1, i) = 0$	20-2-5	3 1	8	$\sqrt{8}\left(3r^3-2r\right)\cos\theta$	x primary coma
$n_n(r)$ $m=0$		3 3	9	$\sqrt{8}r^3\sin(3\theta)$	y trefoil
		3 3	10	$\sqrt{8} r^3 \cos(3\theta)$	x trefoil
		4 0		$\sqrt{5} \left(6r^4 - 6r^2 + 1\right)$	primary spherical
	Series -	4 2		$\sqrt{10} \left(4r^4 - 3r^2 \right) \cos(2\theta)$	x secondary astigmatism
		4 2		$\sqrt{10} \left(4r^4 - 3r^2\right) \sin(2\theta)$	y secondary astigmatism
		4 4		$\sqrt{10} r^4 \cos\left(4\theta\right)$	x tetrafoil
	*	4 4	15	$\sqrt{10} r^4 \sin\left(4\theta\right)$	y tetrafoil
		5 1	16	$\sqrt{12} \left(10r^5 - 12r^3 + 3r \right) \cos \theta$	x secondary coma
		5 1		$\sqrt{12} \left(10r^5 - 12r^3 + 3r \right) \sin \theta$	y secondary coma
	14	$5 \ 3$		$\sqrt{12} (5r^5 - 4r^3) \cos(3\theta)$	x secondary trefoil
	e	$5 \ 3$	19	$\sqrt{12} (5r^5 - 4r^3) \sin(3\theta)$	y secondary trefoil
	1000	5 5	20	$\sqrt{12} r^5 \cos(5\theta)$	x pentafoil
(n-m)/9		5 5		$\sqrt{12}r^5\sin(5\theta)$	y pentafoil
(n-m)/2 (1) ^S (m c)		6 0		$\sqrt{7} \left(20r^6 - 30r^4 + 12r^2 - 1 \right)$	secondary spherical
$D^{m}(-)$ $\sum (-1)(n-s)$ $-n-2s$	-	6 2		$\sqrt{14} (15r^6 - 20r^4 + 6r^2) \sin(2\theta)$	y tertiary astigmatism
$R_m(r) = \sum_{r=1}^{\infty} \frac{1}{r} \left(\frac{r}{r} \right) \frac{r}{r} \left(\frac{r}{r} \left(\frac{r}{r} \right) \frac{r}{r} \left(\frac{r}{r} \right) \frac{r}{r} \left(\frac{r}{r} \right) \frac{r}{r} \left($	1. 1. 1. 1. 1.	6 2		$\sqrt{14} (15r^6 - 20r^4 + 6r^2) \cos(2\theta)$	x tertiary astigmatism
$s! (\frac{n+m}{2} - s)! (\frac{n-m}{2} - s)!$		6 4	25	$\sqrt{14} (6r^6 - 5r^4) \sin(4\theta)$	y secondary tetrafoil
$R_n^m(r) = \sum_{s=0}^{(n-m)/2} \frac{(-1)^s (n-s)!}{s! \left(\frac{n+m}{2} - s\right)! \left(\frac{n-m}{2} - s\right)!} r^{n-2s}$	1	6 4	26	$\sqrt{14} (6r^6 - 5r^4) \cos(4\theta)$	x secondary tetrafoil
		6 6	27	$\sqrt{14} r^6 \sin(6\theta)$	
	1923	6 6	28	$\sqrt{14} r^6 \cos\left(6\theta\right)$	
$\operatorname{Sin}(m\theta) = i \operatorname{Odd}$	196	7 1		$4\left(35r^7 - 60r^5 + 30r^3 - 4r\right)\sin\theta$	y tertiary coma
$G^{\mu\nu}(\theta) = \zeta$		7 1		$4\left(35r^7 - 60r^5 + 30r^3 - 4r\right)\cos\theta$	x tertiary coma
$G^{m}(\theta) = \begin{cases} \sin(m\theta) & i \text{ odd} \\ \cos(m\theta) & i \text{ even.} \end{cases}$		7 3		$4(21r^7 - 30r^5 + 10r^3)\sin(3\theta)$	
		7 3		$4\left(21r^7 - 30r^5 + 10r^3\right)\cos(3\theta)$	
		7 5		$4\left(7r_{2}^{7}-6r_{2}^{5}\right)\sin\left(5\theta\right)$	
		7 5		$4\left(7r^7-6r^5\right)\cos\left(5\theta\right)$	
		77		$4r^7\sin(7\theta)$	
		77	36	$4r^7\cos(7\theta)$	

→ THE EUROPEAN SPACE AGENCY

8 0 37 3 $(70r^8 - 140r^6 + 90r^4 - 20r^2 + 1)$ tertiary spherical

*

Wavefront Error (WFE) formulas

💳 📕 🛨 💳 💶 📕 ±Ξ 💳 📕 📕 🚍 📲 🗮 🔤 🙀 🚳 🚬 📕 💥 🛨 🛨 🔤 💳 🍁 🛛 → THE EUROPEAN SPACE AGENCY

Deformable Mirrors (I): Principle

Deformable Mirrors (II): e.g Piezoelectric technology

Figure 1.15: Left: The bimorph mirror is made of two active layers (with opposite polarity) bonded together. When a voltage is applied on the positive electrode, one layer shrinks, while the other one extends resulting in the bending of the mirror. Right: The unimorph mirror is made of only one active layer bonded to a passive substrate which bends when a voltage is applied on the active layer.

Deformable Mirrors (III): examples (Large, small, continuous, segmented, piezo, voice coils etc)

💳 💳 📕 🚼 💳 🔚 📕 ╧═ 💳 📕 📕 🚍 👯 💳 🖬 🚺 🔽 🖛 ன 🚱 🔽 📕 💥 🛨 💳 💳 🙀 → THE EUF

Deformable Mirrors (IV) – some Trade-offs

SNR per actuator & Latency & Complexity Good WFE control Many actuators Slow & Resonance freq. & Required power Stroke Large Large wavelength band Complexity Optical coating Small DM Less bulky More sensitive to aberrations Performance

Good

The DM must be properly dimensioned, not always good to have "the best" DM Rule of thumb: "one actuator per r0"

Cost

Number of actuators	depends on the desired correction capability
Stroke	depends on the telescope diameter
Actuator Geometry	should match the WFS sampling geometry
Actuator spacing	related to the stroke
Lowest resonance frequency	should be >> closed loop rejection bandwidth
Hysteresis	few %
Optical quality	coating, roughness, reflectivity, pupil size, best flat
Thermal stability	should ideally not be sensitive to T°
Control stability	should not drift over time
Electrical properties	e.g power, voltage, current

D = 8 m

Wavefront sensors (I) – most famous: Shack-Hartmann

→ THE EUROPEAN SPACE AGENCY

 \bullet

Figure reference: "Adaptive optics in Astronomy" by Francois Roddier

Wavefront sensors (II)

₩ 🕂 🕇 * 8 ----٥

Wavefront sensors (III) – some Trade-offs

Good WFE measurement Low SNR per microlens & Latency & Complexity Many microlenslets **Dynamics** Slow Large Large wavelength band Chromaticity Complexity Less bulky Small WFS More sensitive to aberrations Performance Good Cost

The WFS must be properly dimensioned Trade-off between spatial & temporal resolution Rule of thumb: "one lens per actuator on the DM"

Spatial resolution	number of lenses should ideally match that of the DM
Linearity	should be linear function of the input
Dynamic Range	should be able to measure large WFE
Sensitivity	should make efficient use of photons
Speed	should be fast, but fast means lower SNR
Spectral range	should work over a wide enough wavelength range
Latency	should be small
Source	ability to work with extended sources (e.g LGS)

Control (I)

Goal: compute the voltages to be applied to the actuators of the DM, in order to deform it to obtain specific target surface. Mainly used: **zonal** or **modal** control

💳 💶 📕 🚼 🧰 🔚 🗮 🗮 💶 📕 📕 🚍 📲 🗮 🔤 🗮 💿 ன 🚺 🚺 🖛 🗮 ன ன 🚱 🕞 📲 👫 🛨 🔤 💳 🐏 → The European space agency

Steps:

- 1. Influence function: poking each actuator one by one separately with a unit voltage & measuring the local deformation with a WFS
- Construction of a matrix (J): one column per actuator and the rows contain the unitary deformation in each grid point
- 3. "We know that when we apply unit voltage, we obtain J. So which voltage v should be applied to obtain any other shape w ?"
 w contains the local deformations
- 4. Superposition principle: w = J v
 → v = J⁻¹ w (but J difficult to invert)

_____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ____ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___ ___

Steps:

0. Any shape can be decomposed in ZM

- Poking each actuator one by one with a unit voltage & the deformation produced is decomposed in ZM, e.g 2.1* Defocus + 3.2* Astigmatism +...
- Construction of a matrix (J): one column per actuator and every row contains the coefficients of each modes (2.1, 3.2,).
- 3. "We know that when we apply unit voltage, we obtain this combination of ZM.
 So which voltage v should be applied to obtain any other combination of ZM, w ?"
 w contains the ZM coefficients of the desired shape.
- 4. Superposition principle: w = J v
 - \rightarrow v = J⁻¹ w (but J difficult to invert)

Control (IV)

- Correction efficiency given by transfer function of ϕ_{res} / $\phi_{turb.}$
- Major limitation of AO performance:

• Time delays: $\sigma \propto \frac{\tau_D}{\tau_0}$

• Control bandwidth frequency: $\sigma \propto \frac{\tau_0}{f_c}$

- Trade-off between:
 - Correction performance & stability
 - Control bandwidth & noise
- Optimization of the loop in real time as a function of the strength of the turbulence

5/3

➔ Monitoring equipment

━ ━ ■ ■ ₩ = = # ■ ■ ±= ━ ■ ■ ■ ■ = # = ■ ■ ■ ₩ += + = = =

- <u>Goal:</u> use bright star in the sky close to the object of interest, to be used as a reference to measure the turbulence with the WFS
- <u>Issue</u>: The amount of bright stars close to the object is small
- Possible solutions:
 - Use the downlink beam of a satellite to be used as reference
 - Create an artificial star wherever we want !
 - Sodium Guide Star
 - Rayleigh Guide Star
 - Not use any reference & increase beam divergence

━ ━ ■ ■ ₩ ₩ ━ = #2 ■ # ±= ━ ■ ■ ■ ₩ = = = ■ ■ ■ → ™ += ■ = = = = ₩ → ™

"Artificial Star" (as a reference) – Sodium Guide Star

Alternative to Sodium Guide Star: Rayleigh Guide Star

Adaptive Optics: Example (I)

Adaptive Optics: Example (I)

• Performance metrics:

0

- Strehl ratio (SR): Peak intensity actual spot Peak intensity perfect spot
- Power coupled in a single mode optical fibre
- (e.g 1m telescope, GEO, 5W downlink, 100s nW, 20% efficiency)
- When AO performs well: more energy in the fibre
- $0 \le SR \le 1$ & High SR \rightarrow Better quality
- SR gives an approx. of the coupled power
- Marechal Approx.:

$$\sigma R \approx e^{-\sigma_{\varphi}^2} \qquad \sigma_{\varphi} = 2\pi \frac{\text{WFE}}{\lambda}$$

Possibilities of traineeships PhD PostDoc

David.Alaluf@esa.int

www.esa.int

###